Constrained Dichromatic Colour Constancy

نویسندگان

  • Graham D. Finlayson
  • Gerald Schaefer
چکیده

Statistics-based colour constancy algorithms work well as long as there are many colours in a scene, they fail however when the encountering scenes comprise few surfaces. In contrast, physics-based algorithms, based on an understanding of physical processes such as highlights and interre ections, are theoretically able to solve for colour constancy even when there are as few as two surfaces in a scene. Unfortunately, physics-based theories rarely work outside the lab. In this paper we show that a combination of physical and statistical knowledge leads to a surprisingly simple and powerful colour constancy algorithm, one that also works well for images of natural scenes. From a physical standpoint we observe that given the dichromatic model of image formation the colour signals coming from a single uniformlycoloured surface are mapped to a line in chromaticity space. One component of the line is de ned by the colour of the illuminant (i.e. specular highlights) and the other is due to its matte, or Lambertian, re ectance. We then make the statistical observation that the chromaticities of common light sources all follow closely the Planckian locus of black-body radiators. It follows that by intersecting the dichromatic line with the Planckian locus we can estimate the chromaticity of the illumination. We can solve for colour constancy even when there is a single surface in the scene. When there are many surfaces in a scene the individual estimates from each surface are averaged together to improve accuracy. In a set of experiments on real images we show our approach delivers very good colour constancy. Moreover, performance is signi cantly better than previous dichromatic algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex and Non-convex Illuminant Constraints for Dichromatic Colour Constancy

The dichromatic reflectance model introduced by Shafer [16] predicts that the colour signals of most materials fall on a plane spanned by a vector due to the material and a vector that represents the scene illuminant. Since the illuminant is in the span of all dichromatic planes, colour constancy can be achieved by finding the intersection of two or more planes. Unfortunately, this approach has...

متن کامل

Single Surface Colour Constancy

There are two broad classes of colour constancy algorithms: statistical and physics-based. The former attempt to correlate the statistics of the colours in an image with statistical knowledge about light and surfaces. If there is good colour diversity in a scene then the statistical approach often works well. The latter, physics-based algorithms are founded on an understanding of how physical p...

متن کامل

Modelling colour constancy in fish: implications for vision and signalling in water.

Colour vision and colour signals are important to aquatic animals, but light scattering and absorption by water distorts spectral stimuli. To investigate the performance of colour vision in water, and to suggest how photoreceptor spectral sensitivities and body colours might evolve for visual communication, we model the effects of changes in viewing distance and depth on the appearance of fish ...

متن کامل

Modelling fish colour constancy, and the implications for vision and signalling in water

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version. Copyright and all moral rights to the version of the paper presented here belong to the individual ...

متن کامل

Chromatic Illumination Discrimination Ability Reveals that Human Colour Constancy Is Optimised for Blue Daylight Illuminations

The phenomenon of colour constancy in human visual perception keeps surface colours constant, despite changes in their reflected light due to changing illumination. Although colour constancy has evolved under a constrained subset of illuminations, it is unknown whether its underlying mechanisms, thought to involve multiple components from retina to cortex, are optimised for particular environme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000